Effects of rootstock selection on finished wine from mature high-grade Pinot Noir clone 114 vines

Prepared by: Hannah Hodges

Supervisor: Nicola Cooley

Overview

- Introduction
 - The Australian Wine Industry and Phylloxera
 - Current understanding of rootstocks
- Project methodology
 - Grape selection
 - Fermentation procedures
 - Analysis and evaluation

Phylloxera & Australia

- Grape phylloxera (Daktulsphaira vitifoliae)
 - Destroys Vitis vinifera vines by feeding on roots
- Found in Geelong in 1877 (PGIBSA, 2003)
- Current PIZ's (Vinehealth Australia, 2016)
 - Victoria
 - North East, Maroondah, Nagambie, Mooroopna, Upton and Whitebridge
 - New South Wales
 - Sydney region and Albury

Rootstocks

- American native vines developed evolutionary resistance to phylloxera
- Grafting of common, desirable grape varietals on to tolerant rootstocks is only current strategy for phylloxera tolerance
- Main rootstock parentages (Whiting, 2003)
 - Vitis riparia x Vitis rupestris
 - Low drought tolerance, low to moderate vigour, associated with quality wine production
 - Vitis berlandieri x Vitis riparia
 - Moderate drought tolerance, good grafting affinity
 - Vitis berlandieri x Vitis rupesris
 - Vigorous, good drought tolerance, long vegetative cycle

Rootstock Selection

- Rootstock selection depends on many factors (Goldammer, 2013)
 - o Climate
 - Soil type
 - Preferred vineyard management style
 - Grape varietals to be grafted

Schwarzmann

- Vitis riparia x Vitis rupestris (Goldammer, 2013)
- Not ideal in drought conditions
- Improves fruit set
 - Consistently higher berry count
- Poor sugar to acid relationship under water stress
- Higher juice pH

Schwarzmann Process Data

INCOMING WEIGHT	355kg
DESTEM WEIGHT	321.5kg
AVERAGE BUNCH WEIGHT	73.2g
AVERAGE BERRY COUNT	105.8
AVERAGE BERRY WEIGHT	0.8591g
START BAUME	13
START pH/TA	3.55/8.28g/L
START MALIC ACID	1.89g/L

Schwarzmann Faults

140 Ruggeri

- Vitis berlandieri x Vitis rupesris (Goldammer, 2013)
- Moderately vigorous
- Long vegetative cycle, delayed ripening
- High phylloxera resistance
- Moderately drought tolerant

140 Ruggeri Process Data

INCOMING WEIGHT	357.5kg
DESTEM WEIGHT	318.5kg
AVERAGE BUNCH WEIGHT	58.8g
AVERAGE BERRY COUNT	94.5
AVERAGE BERRY WEIGHT	0.8733g
START BAUME	12.6
START pH/TA	3.53/8.88g/L
START MALIC ACID	2.81g/L

140 Ruggeri Faults

1103 Paulsen

- Vitis berlandieri x Vitis rupesris (Goldammer, 2013)
- Vigorous
- Extremely long vegetative cycle
- Prefers drought conditions

1103 Paulsen Process Data

INCOMING WEIGHT	294.5kg
DESTEM WEIGHT	264kg
AVERAGE BUNCH WEIGHT	46.75g
AVERAGE BERRY COUNT	56.6
AVERAGE BERRY WEIGHT	1.05g
START BAUME	13.1
START pH/TA	3.48/9.05g/L
START MALIC ACID	2.83g/L


1103 Paulsen Faults


Bunch Architecture

Schwarzmann

140 Ruggeri

1103 Paulsen

Intent of Research

- Is there a detectable difference between rootstocks
 - o Physical
 - o Chemical
 - Sensory
- Does this have an effect on perceived quality?
 - Benchmark testing

- Grape selection
 - Considered an established premium site for Pinot Noir
 - Upper Yarra Valley
 - East facing slope
 - 330m elevation
 - Entire vineyard planted on rootstock in 2001
 - Block 8 Pinot Noir clone 114 on three rootstock variants
 - 140 Ruggeri
 - 1103 Paulsen
 - Schwarzmann

Harvest

 Four pre-selected rows hand-picked simultaneously into individual half-tonne solid bins

Processing

- 12 hour cold stabilisation at 13 degrees
- Destemmed into individual solid bins
- Standard addition of PMS and pectolytic enzyme
- 48 hour cold soak at 15 degrees
- Given ferment codes
 - 17PIN18
 - 17PIN19
 - 17PIN20

- Primary Fermentation
 - Warmed to 21 degrees
 - Innoculated with Laffort Zymaflore X-Pure yeast strain
 - Daily hand plunge
 - Four day extended maceration post-Bé dry
 - Pressed off skins with basket press
- Transfer to barrel
 - 5 year old barriques
 - o Each filled to 190L
 - Topped to 225L with 17PIN01
 - Neutral own-rooted Pinot Noir clone 114

- Secondary Fermentation
 - Currently undergoing malolactic fermentation in barrel
 - Sulphur addition will be made at completion
- Post-Fermentation
 - Will be left in barrel for a 6 month maturation period
 - Each barrel will be bottled independently

Physical Observations

- Vineyard observations
 - Response to water
 - Vine health during season
 - Relative canopy vigour
- Fruit observations
 - Degree of shrivel
 - Indications of fruit set
 - Bunch architecture
 - Bunch weight (average, 20 bunches)
 - Berry count (average, 20 bunches)
 - Berry weight (average, 100 berry from 20 bunches)

Chemical Analysis

- Berry analysis
 - Potassium of pulp and skins
 - o YAN
 - o Bé, pH, TA
- Ferment analysis
 - Daily Bé and temperature during primary
 - Bé, pH and TA at completion of primary
 - Malic acid
- Finishing analysis
 - o pH, TA and VA
 - Residual sugar
 - Alcohol

Finishing Analysis

Schwarzmann	140 Ruggeri	1103 Paulsen
3.53	3.60	3.59
6.93g/L	6.42g/L	6.94g/L

Sensory Analysis & Benchmarking

- Preference tasting of grapes and active ferments
 - Ranked in order from 1 = most preferred to 3 = least preferred
- Full sensory analysis to be conducted on bottled wine
 - Triangular tasting
 - Single, double and triple blind tasting
 - Descriptive tasting
- Benchmarking
 - Presented to conference for tasting against other wines of high or premium perceived quality

SENSORY ANALYSIS

- Preference among producers when blind and double blind tasting has consistently been for the wines made from 140 Ruggeri or 1103 Paulsen
 - Attitudes towards Schwarzmann wine were negative, with comments of "over-ripe" and "stewed"
- Preference among retail staff and consumers when blind and double blind tasting has been Schwarzmann with a preference of 75%
 - Comments of "earthy", "rich" and "fruity" for this wine, comments of "too acidic" and "not very fruity" for other two wines

References

- Berdeja, M., Hilbery, G., Dai, Z.W., Lafontaine, M., Stoll, M., Schultz, H.R & Delrot, S. (2014), Effect of water stress and rootstock genotype on Pinot Noir berry composition. Australian Journal of Grape and Wine Research, 20: 409-421.
- Goldammer, T. (2013), The grape grower's handbook: a complete guide to viticulture for wine production. Virginia, USA: Apex.
- King, P.D. & Buchanan, G.A. (1986), The dispersal of phylloxera crawlers and spread of phylloxera infestations in New Zealand and Australian vineyards.
 American Journal of Enology and Viticulture. 37: 26-33.
- PGIBSA (2003), A guide to grape phylloxera in Australia. Phylloxera and Grape Industry Board of South Australia, Australia.
- Powell, K.S. & Kristic, M. (2015), Pylloxera: Rootstock tolerance and resistance to different genetic strains of phylloxera. Wine and Viticulture Journal. 30(5): 48-51.
- Vinehealth Australia (2016), Annual Report 2015-2016. Vinehealth Australia, South Australia, Australia.
- Whiting, J. (2003), Selection of grapevine rootstocks and clones. DPI, Australia.