Effects of rootstock selection on finished wine from mature high-grade Pinot Noir clone 114 vines

Prepared by: Hannah Hodges
Supervisor: Nicola Cooley
Overview

• Introduction
 o The Australian Wine Industry and Phylloxera
 o Current understanding of rootstocks

• Project methodology
 o Grape selection
 o Fermentation procedures
 o Analysis and evaluation
Phylloxera & Australia

- Grape phylloxera (*Daktulosphaira vitifoliae*)
 - Destroys *Vitis vinifera* vines by feeding on roots

- Found in Geelong in 1877 (PGIBSA, 2003)

- Current PIZ’s (Vinehealth Australia, 2016)
 - Victoria
 - North East, Maroondah, Nagambie, Mooroolbark, Upton and Whitebridge
 - New South Wales
 - Sydney region and Albury
Rootstocks

• American native vines developed evolutionary resistance to phylloxera
• Grafting of common, desirable grape varietals on to tolerant rootstocks is only current strategy for phylloxera tolerance
• Main rootstock parentages (Whiting, 2003)
 o *Vitis riparia* x *Vitis rupestris*
 • Low drought tolerance, low to moderate vigour, associated with quality wine production
 o *Vitis berlandieri* x *Vitis riparia*
 • Moderate drought tolerance, good grafting affinity
 o *Vitis berlandieri* x *Vitis rupestris*
 • Vigorous, good drought tolerance, long vegetative cycle
Rootstock Selection

- Rootstock selection depends on many factors (Goldammer, 2013)
 - Climate
 - Soil type
 - Preferred vineyard management style
 - Grape varietals to be grafted
Schwarzmann

- *Vitis riparia x Vitis rupestris* (Goldammer, 2013)

- Not ideal in drought conditions

- Improves fruit set
 - Consistently higher berry count

- Poor sugar to acid relationship under water stress

- Higher juice pH
Schwarzmann Process Data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOMING WEIGHT</td>
<td>355kg</td>
</tr>
<tr>
<td>DESTEM WEIGHT</td>
<td>321.5kg</td>
</tr>
<tr>
<td>AVERAGE BUNCH WEIGHT</td>
<td>73.2g</td>
</tr>
<tr>
<td>AVERAGE BERRY COUNT</td>
<td>105.8</td>
</tr>
<tr>
<td>AVERAGE BERRY WEIGHT</td>
<td>0.8591g</td>
</tr>
<tr>
<td>START BAUME</td>
<td>13</td>
</tr>
<tr>
<td>START pH/TA</td>
<td>3.55/8.28g/L</td>
</tr>
<tr>
<td>START MALIC ACID</td>
<td>1.89g/L</td>
</tr>
</tbody>
</table>
Schwarzmann Faults
140 Ruggeri

- *Vitis berlandieri x Vitis rupesris* (Goldammer, 2013)
 - Moderately vigorous
 - Long vegetative cycle, delayed ripening
 - High phylloxera resistance
 - Moderately drought tolerant
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOMING WEIGHT</td>
<td>357.5kg</td>
</tr>
<tr>
<td>DESTEM WEIGHT</td>
<td>318.5kg</td>
</tr>
<tr>
<td>AVERAGE BUNCH WEIGHT</td>
<td>58.8g</td>
</tr>
<tr>
<td>AVERAGE BERRY COUNT</td>
<td>94.5</td>
</tr>
<tr>
<td>AVERAGE BERRY WEIGHT</td>
<td>0.8733g</td>
</tr>
<tr>
<td>START BAUME</td>
<td>12.6</td>
</tr>
<tr>
<td>START pH/TA</td>
<td>3.53/8.88g/L</td>
</tr>
<tr>
<td>START MALIC ACID</td>
<td>2.81g/L</td>
</tr>
</tbody>
</table>
140 Ruggeri Faults
1103 Paulsen

• *Vitis berlandieri x Vitis rupesris* (Goldammer, 2013)

• Vigorous

• Extremely long vegetative cycle

• Prefers drought conditions
1103 Paulsen Process Data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOMING WEIGHT</td>
<td>294.5kg</td>
</tr>
<tr>
<td>DESTEM WEIGHT</td>
<td>264kg</td>
</tr>
<tr>
<td>AVERAGE BUNCH WEIGHT</td>
<td>46.75g</td>
</tr>
<tr>
<td>AVERAGE BERRY COUNT</td>
<td>56.6</td>
</tr>
<tr>
<td>AVERAGE BERRY WEIGHT</td>
<td>1.05g</td>
</tr>
<tr>
<td>START BAUME</td>
<td>13.1</td>
</tr>
<tr>
<td>START pH/TA</td>
<td>3.48/9.05g/L</td>
</tr>
<tr>
<td>START MALIC ACID</td>
<td>2.83g/L</td>
</tr>
</tbody>
</table>
1103 Paulsen Faults
Bunch Architecture
Schwarzmann
140 Ruggeri
1103 Paulsen
Intent of Research

• Is there a detectable difference between rootstocks
 o Physical
 o Chemical
 o Sensory

• Does this have an effect on perceived quality?
 o Benchmark testing
Materials and Methods

• Grape selection
 o Considered an established premium site for Pinot Noir
 • Upper Yarra Valley
 • East facing slope
 • 330m elevation
 • Entire vineyard planted on rootstock in 2001

 o Block 8 – Pinot Noir clone 114 on three rootstock variants
 • 140 Ruggeri
 • 1103 Paulsen
 • Schwarzmann
Materials and Methods

• Harvest
 - Four pre-selected rows hand-picked simultaneously into individual half-tonne solid bins

• Processing
 - 12 hour cold stabilisation at 13 degrees
 - Destemmed into individual solid bins
 - Standard addition of PMS and pectolytic enzyme
 - 48 hour cold soak at 15 degrees
 - Given ferment codes
 • 17PIN18
 • 17PIN19
 • 17PIN20
Materials and Methods

• Primary Fermentation
 o Warmed to 21 degrees
 o Innoculated with Laffort Zymaflore X-Pure yeast strain
 o Daily hand plunge
 o Four day extended maceration post-Bé dry
 o Pressed off skins with basket press

• Transfer to barrel
 o 5 year old barriques
 o Each filled to 190L
 o Topped to 225L with 17PIN01
 • Neutral own-rooted Pinot Noir clone 114
Materials and Methods

• Secondary Fermentation
 o Currently undergoing malolactic fermentation in barrel
 o Sulphur addition will be made at completion

• Post-Fermentation
 o Will be left in barrel for a 6 month maturation period
 o Each barrel will be bottled independently
Physical Observations

• Vineyard observations
 o Response to water
 o Vine health during season
 o Relative canopy vigour

• Fruit observations
 o Degree of shrivel
 o Indications of fruit set
 o Bunch architecture
 o Bunch weight (average, 20 bunches)
 o Berry count (average, 20 bunches)
 o Berry weight (average, 100 berry from 20 bunches)
Chemical Analysis

- **Berry analysis**
 - Potassium of pulp and skins
 - YAN
 - Bé, pH, TA

- **Ferment analysis**
 - Daily Bé and temperature during primary
 - Bé, pH and TA at completion of primary
 - Malic acid

- **Finishing analysis**
 - pH, TA and VA
 - Residual sugar
 - Alcohol
Finishing Analysis

<table>
<thead>
<tr>
<th>Schwarzmann</th>
<th>140 Ruggeri</th>
<th>1103 Paulsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.53</td>
<td>3.60</td>
<td>3.59</td>
</tr>
<tr>
<td>6.93g/L</td>
<td>6.42g/L</td>
<td>6.94g/L</td>
</tr>
</tbody>
</table>
Sensory Analysis & Benchmarking

• Preference tasting of grapes and active ferments
 o Ranked in order from 1 = most preferred to 3 = least preferred

• Full sensory analysis to be conducted on bottled wine
 o Triangular tasting
 o Single, double and triple blind tasting
 o Descriptive tasting

• Benchmarking
 o Presented to conference for tasting against other wines of high or premium perceived quality
SENSORY ANALYSIS

• Preference among producers when blind and double blind tasting has consistently been for the wines made from 140 Ruggeri or 1103 Paulsen
 o Attitudes towards Schwarzmann wine were negative, with comments of “over-ripe” and “stewed”

• Preference among retail staff and consumers when blind and double blind tasting has been Schwarzmann with a preference of 75%
 o Comments of “earthy”, “rich” and “fruity” for this wine, comments of “too acidic” and “not very fruity” for other two wines
References

- PGIBSA (2003), A guide to grape phylloxera in Australia. Phylloxera and Grape Industry Board of South Australia, Australia.
- Whiting, J. (2003), Selection of grapevine rootstocks and clones. DPI, Australia.